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Abstract

Though existing face hallucination methods achieve
great performance on the global region evaluation, most of
them cannot recover local attributes accurately, especially
when super-resolving a very low-resolution face image from
14 x 12 pixels to its 8 x larger one. In this paper, we pro-
pose a brand new Attribute Augmented Convolutional Neu-
ral Network (AACNN) to assist face hallucination by ex-
ploiting facial attributes. The goal is to augment face hal-
lucination, particularly the local regions, with informative
attribute description. More specifically, our method fuses
the advantages of both image domain and attribute domain,
which significantly assists facial attributes recovery. Ex-
tensive experiments demonstrate that our proposed method
achieves superior visual quality of hallucination on both
local region and global region against the state-of-the-art
methods. In addition, our AACNN still improves the per-
formance of hallucination adaptively with partial attribute
input.

1. Introduction

Face hallucination is a domain-specific image super res-
olution technique which generates high resolution (HR) fa-
cial images from low-resolution (LR) inputs. Different from
generic image super resolution methods, face hallucination
exploits special facial structures and textures. In some ap-
plications such as face recognition in video surveillance sys-
tem and image editing, face hallucination can be thought as
a preprocessing step for these face-related applications.

Face hallucination has attracted great attention in the past
few years [2, (8} [10, 12} [15L [7, 119} [16} 20]. All of previous
works only utilize low resolution images as input to gener-
ate high resolution outputs without leveraging attribute in-
formation. Most of them cannot accurately hallucinate lo-
cal attributes or accessories in ultra-low-resolution (i.e. 14
x 12 pixels). When downsampling a face image by 8x
upscaling factor, almost 98.5% of the information is miss-
ing including some facial attributes (e.g. eyeglasses, beard
etc.). Therefore, these methods achieve great performance
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Figure 1. (a) Scenario I of AACNN : A detective questions a
witness about more information of the suspect, because the sus-
pect was only recorded by surveillance system with low resolution
face. By the help of AACNN, the detective can obtain a more dis-
tinct wanted poster with clear facial attributes. (b) Scenario II of
AACNN : We can get most facial attributes of the suspect from a
high-resolution wanted poster to help hallucinate the low resolu-
tion face recorded by surveillance system. With this method, we
can check if the recorded face is the suspect by face verification.

only on the global region rather than local region.

In this paper, we propose a novel Attribute Augmented
Convolutional Neural Network (AACNN) which is the first
method exploiting extra facial attribute information to over-
come the above issue. Our model can be applied in two real-
world scenarios. (i) A detective only has a wanted poster of
the suspect with low-resolution face. He can obtain the de-
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Figure 2. The network structure of Attribute Augmented Convolutional Neural Network (AACNN). AACNN contains three components
: generator, feature extractor and discriminator. The generator network is responsible for learning mapping from LR image to HR image.
The feature extractor network is responsible for extracting features, fusing two different feature domains, and guiding the generator towards
the target HR image. Branch A can exploit more fine-grained information from low resolution facial image than the generator network.
Branch B can extract high semantic features from input attributes and transform features into LR image shape which can perceptually learn
the semantic from attributes. The discriminator is responsible for distinguishing real or fake of a input face.

tails of the suspect’s facial attributes by questioning a wit-
ness . With the help of AACNN, the detective can receive
a more distinct wanted poster with clear facial attributes as
shown in Figm (a). (i1) We can get most of the suspect’s fa-
cial attributes from a high-resolution wanted poster to help
hallucinate low resolution faces recorded by surveillance
system. With this method, we can check if the recorded
face is the suspect by face verification as shown in Fig[l]
(b). Therefore, with the help of attribute information, our
network can hallucinate low resolution images better in a
novel way. AACNN utilizes both LR facial images and cor-
responding attributes as input to super-resolve a tiny (¢.e.14
x 12 pixels) face image by a remarkable upscaling factor 8,
where we reconstruct 64 pixels for each single pixel of the
input LR image.

In the real world situation, since humans are impossible
to know all the attributes of a face, we define a representa-
tion of unknown attribute. AACNN can still exploit partial
information to help hallucinate LR faces and have superior
visual quality. Details are shown in Sec. [3.3]and Sec. [#.4]

In Fig. 2] our network consists of three components:
generator network, feature extractor network and discrim-

inator network. The generator network is responsible for
learning mapping from LR image to HR image. The feature
extractor network is responsible for extracting features, fus-
ing two different feature domains, and guiding the generator
towards the target HR image. The discriminator is respon-
sible for distinguishing real or fake of an input face. The
compositions of LR images are essentially different from
the compositions of attributes. For this reason, we develop
a domain fusion method to solve this problem.
Overall, our main contributions are as following:

e We propose a brand new Attribute Augmented Convo-
lutional Neural Network (AACNN) using attribute in-
formation to assist hallucinate low-resolution face im-
ages with 8 x scaling factor. In particular, we propose
a novel perceptual fusion method from image and at-
tribute domains.

Compared with previous state-of-the-art methods, our
proposed method achieves superior visual quality of
hallucination on both global and local regions.

Our AACNN still improves the performance of hallu-
cination adaptively with partial attribute inputs.



2. Related work
2.1. Face hallucination

Face hallucination is a special case of single-image super
resolution which aims at recovering a high-resolution im-
age for single low-resolution image. Generic image super-
resolution does not take image class information into ac-
count. Face hallucination is a class-specific problem on hu-
man face which aims to exploit statistical information on
facial images. Because face hallucintion super-resolves im-
ages of a specific class, it usually attains better results than
generic methods. State-of-the-art face hallucination meth-
ods can be grouped into three categories: holistic face based
methods, facial component based methods, and convolu-
tional neural network (CNN) based methods.

Holistic face based methods learn a global face model.
Wang et al. [[13]] develop an eigen-transformation method to
generate HR face by finding a linear mapping between LR
and HR face subspaces. Liu et al. [8] employs a global face
model learning by Principal Component Analysis (PCA).
Ma et al. [10] samples LR exemplar patches from aligned
HR face images to hallucinate faces. Holistic face based
methods require precisely aligned reference HR and LR fa-
cial images with the same pose and facial expression.

Facial component based methods resolve facial parts
rather than the entire face, and thus can address various
poses and expressions. Tappen et al. [12] exploits SIFT
flow to align facial parts of LR images, and then reconstruct
LR face images by warping corresponding HR face images.
However, the global structure is not preserved because of
using local mapping. Yang et al. [[15] proposes a structured
face hallucinated method to maintain the facial structure.
However, it needs accurate facial landmark to assist.

Convolutional neural networks based methods have
claimed the state-of-the-art performance recently. Zhou et
al. [19] presents a bi-channel CNN to hallucinate blurry
face images. They firstly use CNN to extract facial fea-
tures. Zhu et al. [20] jointly learns face hallucination and
face spatial configuration estimation. However, the results
of these methods look over-smooth due to using pixel-wise
Euclidean distance loss.

2.2. Generative adversarial network

Goodfellow et al. [3] introduce the GAN framework to
simultaneously train generator and discriminator that com-
pete with each other. This model can generate realistic im-
ages form random noise. Radford and Metz et al. [11]
propose a set of constraints on the architectural topology
of Convolutional GANs (DCGAN) that make them stable
to train in most settings. Arjovsky et al. [1] introduce a
new method to measure the distance of two data distribution
called Wasserstein GAN which makes training processes of
GAN more stable. GAN is generally a popular generative

model recently which can generate realistic images.

2.3. Face hallucination with adversarial training

For pre-aligned faces, Yu et al. [16] first introduces Gen-
erative Adversarial Network (GAN) to solve face halluci-
nation. This method jointly uses the pixel-wise Euclidean
distance loss and the adversarial loss, which aims to gener-
ate a realistic facial image closet to the average of all po-
tential faces. For un-aligned faces, Yu et al. [17] which
is a continuation of [[16] proposes Transformative Discrim-
inative Neural Network (TDN) by concatenating the spatial
transformation layers for solving deficient results because
of unaligned tiny input. Given noisy and unaligned tiny
input, Yu et al. [18] introduce Transformative Discrimi-
native Autoencoders (TDAE) which uses autoencoder ar-
chitecture and discriminator network by concatenating the
spatial transformation layers to solve deficient results. By
leveraging adversarial training, we can make hallucinated
images more realistic. However, these works have weak
ability to recover detailed facial attributes.

3. Proposed Method
3.1. Overall Framework

The problem we have to solve is to hallucinate a very
low-resolution face image from 14 x 12 pixels to its 8 x
larger one. We first recover such low-resolution images with
assist of additional facial attribute information. The inputs
of our framework are tiny (¢.e.14 x 12 pixels) face images
and discrete attribute vectors with 38 elements. We also
define a representation of unknown attribute, and replace
each attribute vector with specific unknown proportion in
unknown attribute experiment (see Sec. [3.3). The outputs
are clear face images with 112 x 96 pixels. By using convo-
lution neural network, we can fuse different domain features
and super-resolve low resolution images (see Sec. [3.4). Our
framework contains three components which are generator
network, feature extractor network and discriminator net-
work (see Sec. [3.2).

3.2. Network Architecture

Our AACNN contains three components : generator, fea-
ture extractor and discriminator.
Generator network. In Fig. 2], the structure of our gen-
erator network uses learnable transposed convolution layer
for super-resolution due to its superior performance. It is
responsible for learning a mapping between low resolution
image and high resolution image and receiving the features
from feature extractor. We use PReLU [4] activation func-
tion after each layer in convolution and deconvolution stage
except for image reconstruction which utilizes tanh.
Feature extractor network. In our model, we introduce
feature extractor network (Fig. [2) to extract feature from



both low resolution image and attribute, and fuse them to-
gether. The extractor injects guidance to the generator at
every upsampling scale, and assists the generator to learn
the features from image and attribute. The feature extrac-
tor consists of two sub branches as shown in Fig. [2] These
two branches will concatenate together before upsampling
layer. Branch A uses three convolution layers to extract
fine-grained features of low resolution faces before upsam-
pling. Branch B takes attribute as input, expands its dimen-
sion from 38 to 504 by fully connected layer, and then re-
shapes it to the same size of LR image (14 x 12 x 3 =504).
The following convolutional process is the same as Branch
A. We use PReLLU [4] activation function after all layers.
Discriminator network. The discriminator network is re-
sponsible for distinguishing real or fake of a input face. In
Fig. 2] the structure of our discriminator is a 6-layer CNN
network. The inputs are generated images and ground truth
images and the output is the probability of input being re-
alistic image. We follow the setting of DCGAN [11] which
uses LeakyReLU [14] as activation function except for the
last layer which uses a sigmoid function, and batch normal-
ization [3]] added to all convolutional layers.

3.3. Problem Formulation

In vanilla experiment, for a LR face input IX, its cor-
responding attribute input is I = {I/}, 12, ... I/}} and
I2 € {-1,+1},n = 1,2,...,38 where {+1} means that
the face contains target attribute and {—1} means that the
face doesn’t contain target attribute.

In the real world situation, since humans are impossible
to know all the attributes of a face, we define a represen-
tation of unknown attribute. In unknown attribute experi-
ment, the corresponding attribute input of the LR image is
I{‘}L € {-1,0,+1},n = 1,2,...,38 where {0} means that
the person providing attribute input doesn’t know if the tar-
get attribute classes exist or not. We randomly change some
known attributes into unknown one. More details are shown
in Sec. 4.4l

We use pixel-wise Euclidean distance loss, called super-
resolution (SR) loss, to constrain the overall appearance
between a hallucinated facial image and its corresponding
high-resolution facial image, and adversarial loss to make
hallucinated facial image more realistic.

We penalize pixel-wise Euclidean distance between hal-
lucinated face and the corresponding HR face:

SR IHR 1) = ||Gu (1 1) = 175,
where I, IXE and IH % are ith attribute vector, LR facial
image and HR facial image respectively in the training data,
and G, (I, IF®) is the hallucination model output for I}

(2
and I}2.

The objective function is represented as:
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We also further use adversarial training strategy to en-
courage G, (1 Z-A, IER) to construct high-quality results. The
GAN simultaneously trains a generator network , GG, and
discriminator network, D. The training process alternates
optimizing the generator and discriminator, which compete
with each other. The generator learns to generate samples
that can fool the discriminator. The discriminator learns to
distinguish real data and samples from generator. The loss

function we use is as following:

LA (G (I, 1P, 1)

i, 3)
= logDo (") + log(1 — Do(Gu (I, 1)),
The objective function with adversarial loss is repre-
sented as:

N
1
in— Y LSR(IA IFR IR
maxmin— » LS, I I

i=1 )
AL G TE), 101,

1 771

where A is trade-off weight, w denotes the parameters of
hallucination model G, which consists of generator net-
work and feature extractor network and 6 denotes the pa-
rameters of Dy which consists of discriminator network.
All parameters are optimized using stochastic gradient de-
scent (SGD) with standard backpropagation.

3.4. Perceptual fusion from image and attribute do-
main

The information containing in LR images mostly dissim-
ilates to the one in attributes. As this reason, we propose a
method to fuse low resolution image features and attribute
features, and design a feature extractor which consists of
two sub branches. In Fig. [2] each sub branch extracts
complementary features. Branch A can exploit more fine-
grained information from low resolution facial image than
that from the generator network. Branch B can extract high
semantic features from input attributes and transform those
features into LR image shape which can perceptually learn
the meaning from attributes without knowing the informa-
tion of Branch A. We can see an example in Fig. |3] After
extracting two complementary of feature maps, we choose
concatenation to fuse features, because the overlap of two
different domain features is small. Finalliy, we expand and
inject those features to every scale of the generator network.
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Figure 3. Visualization of feature maps in the concatenated layer.
(a) Reference LR and HR face pair. (b) Visualization of the first
half concatenated layer (Branch A). Branch A can exploit more
fine-grained information from low resolution facial image than the
generator network. (c) Visualization the last half concatenated
layer (Branch B). Branch B can extract high semantic features
from input attributes and transform features into LR image shape
which can perceptually learn the semantic from attributes.

4. Experiments
4.1. Implementation details

Training data. We use CelebA dataset [9] to learn our
model. It consists of 202599 face images, and each im-
age uses similarity transformation based on five landmarks
(two eyes, nose and mouth corners) to align facial images
to 96 x 112 pixels images. Every image in CelebA goes
with 40 attribute classes. We use only 38 classes, because
there are 2 classes out of the region we cropped and aligned
in data preprocessing. We select 100000 images in CelebA
as training set, and generate LR face images by downsam-
pling without aliasing. In experiments of unknown attribute,
we replace specific proportion of known attribute with un-
known attribute.

Testing data. We also use CelebA dataset with the same
preprocessing as training data to evaluate our model. In
global evaluation, we randomly choose 10000 images in the
remaining images of CelebA as global region testing set. In
local evaluation, we randomly select 20000 images in re-
maining images of CelebA as local region testing set. We
use 8 specific attribute classes which perform significant
improvement in restoration, and constitute 8 subsets from
local testing set. Each class-specific subset contains 1000
images, and we make overlap region of 8 subset images as
large as possible. In experiments of unknown attribute, we
also replace specific proportion of known attribute with un-
known attribute, and we make sure that target attribute for
local evaluation will not be replaced.

Training details. As shown in Fig. 2] we implement the
AACNN model by using the Caffe library with our modifi-

Method PSNR | SSIM
Baseline - L5 26.8585 | 0.7535
A-LSE 27.3134 | 0.8001

- LSE 27.1243 | 0.7949
A + B (AACNN - L°F) | 27.4007 | 0.8036

Table 1. Quantitative comparison on the global region with the
combinations of different sub branch. A + B can make the perfor-
mance improve a lot due to combining attribute information and
fined-grand features of LR faces.

Method PSNR SSIM
Bicubic 24.2669 | 0.6700
Ma et al. 23.8438 | 0.7119
LapSRN [6] 25.6547 | 0.7212
UR-DGN [16] 24.0931 | 0.6843
Baseline - L°F 26.8585 | 0.7825
AACNN - LSE 27.4007 | 0.8036
AACNN - LSE 4 [adv | 253428 | 0.7118

Table 2. Quantitative comparison on the global region with the
state-of-the-art methods. AACNN - L5 have superior perfor-
mance on both PSNR and SSIM than other state-of-the-arts.

cation. For the model training, we use the batch size of 64.
The learning rate is started from 0.0005, and is divide by
1.25 after each 3000 iterations. The optimization algorithm
we used is RMSProp. We set the decay rate to 0.99 and
weight decay rate to 0.0005. For AACNN - L°F 4 [adv,
we set A (see Eq. [d) to 0.01.

Evaluation on combinations of different sub branch.

In Table [T} we discuss about the performance of different
sub branch combinations. AACNN have all two sub
branches, and get the best performance. Our baseline
model is purely generator network which uses pixel-wise
Euclidean distance loss without feature extractor network
and discriminator network. Branch A is important for
extracting fined-grand LR face features. Branch B extract
purely attribute information without LR image features,
and get lower performance than using only Branch A.
A + B can make the performance improve a lot due to
combining attribute information and fined-grand features
of LR faces.

4.2. Evaluation on global region of face hallucina-
tion

In global region evaluation, we evaluate the face image
with complete size (96 x 112 pixels) by image super
resolution evaluation metrics : Peak Signal-to-Noise Ratio
(PSNR) and Structural Similarity (SSIM). Firstly, we
investigate different combinations of feature extractor’s
sub branch. Then, we compare AACNN with other
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Figure 4. Comparison with the state-of-the-art methods on hallucination global test dataset. (a) Low-resolution inputs images. (b) Bicubic
interpolation. (c) LapSRN [6]. (d) Ma et al. [T0]. (¢) UR-DGN [16]. (f) AACNN - L5 (g) AACNN - L% 4+ 1,39 (h) High-resolution
images. (f) and (g) both shows superior hallucinated effect on visual results. (g) is more realistic than (f) with adversarial training.

state-of-the-arts in recent years. More results are shown in
supplementary material.

Comparing with state-of-the-arts.

We compare our AACNN with bicubic interpolation, our
baseline model, and other three state-of-the-art methods.
Our AACNN have superior visual results as shown in Fig.
[l For Ma et al. [10], LapSRN [6], and UR-DGN [16], we
use their released source code. In the case of UR-DGN, we
especially retrain on our aligned face images which size is
different from original setting. The quantitative comparison
are shown in Table[2l

Ma et al. [10] samples LR exemplar patches from
aligned HR face images to hallucinate faces. It suffers from
obvious blocking artifacts especially on large pose.

LapSRN [6] is design to solve general super resolution
problem. It jointly optimizes the upsampling filters with
deep convolution neural layers to predict sub-band resid-
uals and progressive reconstruct multiple intermediate SR
prediction by using Laplacian pyramid. We retrained Lap-
SRN with CelebA. However, it shows blurry results on fa-
cial image with a remarkable upscaling factor 8.

UR-DGN ([[16] exploits generative adversarial networks
(GAN) framework for face hallucination. It jointly uses the
pixel-wise euclidean distance loss and the adversarial loss,
which aims to generate a realistic facial image closet to the
average of all potential faces. Although GAN can gener-
ate realistic face images, the results of UR-DGN sometimes
looks distorted or disappeared for specific attributes.

In quantitative results, we compare our AACNN with
other methods by using average PSNR and SSIM. LapSRN
[6] gets great performance, but it seems not clear enough
and loses lots of details on visual results. The results of
UR-DGN [I6] and AACNN - L% 4 L% shows lower
performance on PSNR, because the objective of adversarial

Method Eyeglasses Narrow eyes
PSNR / SSIM PSNR / SSIM
Bicubic 20.46/0.457 | 21.79/0.533
Ma et al. 19.75/0.488 | 21.43/0.588
LapSRN [6] 22.81/0.551 | 24.33/0.621
UR-DGN [16] 19.75/70.438 | 21.62/0.568
Baseline - L% 21.77/0.551 | 24.12/0.670
A-LF 22.12/0.579 | 24.68/0.696
B- L5k 23.63/0.632 | 26.44/0.764
AACNN - LSE 23.77/0.643 | 26.81/0.779
AACNN - LSE 4 1adv | 2166/0.514 | 24.81/0.689

Table 3. Quantitative comparison on local region - “eye” part with
the state-of-the-art methods on the class specific test dataset. We
can observe that eyeglasses is the hardest one to recover among
this part. AACNN - L% still has superior performance in this
region.

loss is to make hallucinated images more realistic but close
the distance of hallucinated images and HR images. Table
shows that AACNN - L% have superior performance on
both PSNR and SSIM than other state-of-the-arts because
of introducing attribute information to low-resolution face
hallucination.

4.3. Evaluation on local region of face hallucination

Since global region evaluation is hard to reflect im-
provement of facial detail enhacement, we crop smaller
regions from original images to enlarge the evaluation
effect of attribute recovery. In local region evaluation,
we evaluate the face image by image super resolution
evaluation metrics (PSNR and SSIM) with 3 different
cropped sizes and locations as shown in Fig. [5}

In Table 3] we discuss two attributes in eye part. Eye-



Method Mouth slightly open Goatee Mustache Big nose
PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM
Bicubic 22.96/0.507 22.34/0.480 | 22.48/0.486 | 23.00/0.506
Ma et al. [10] 23.06/0.603 21.79/0.530 | 22.04/0.545 | 22.78/0.584
LapSRN [6] 24.98/0.570 24.52/0.544 | 24.60/0.550 | 24.95/0.566
UR-DGN [16] 22.7510.554 20.81/0.467 | 20.77/0.474 | 22.19/0.537
Baseline - L°F 25.4570.669 23.85/0.598 | 24.08/0.605 | 25.04/0.648
A-L°F 26.01/0.700 24.40/0.634 | 24.67/0.642 | 25.58/0.678
B-L5E 27.65710.757 26.18/0.690 | 26.28 /0.696 | 27.20/0.735
AACNN - LSE 27.98/0.773 26.40/0.704 | 26.55/0.711 | 27.49/0.750
AACNN - LSE 4 padv 25.5570.671 23.97/0.577 | 24.09/0.584 | 24.88/0.629

Table 4. Quantitative comparison on local region - “mouth & nose” part with the state-of-the-art methods on the class specific test dataset.
We can observe that beard (i.e. Goatee and Mustache) is the hardest one to recover among this part. AACNN - L5 still has superior

performance in this region.

Heavy Chubb Region 100/ 100 | 50/100 | 50/50 | 50/25
Method Makeup y & PSNR PSNR PSNR PSNR
PSNR / SSIM

PSNR / SSIM Global region 27.40 27.35 2736 | 27.34
Bicubic 22.20/0.582 | 22.51/0.534 Eyeglasses 23.77 23.74 23.73 | 23.72
Ma et al. [10] 22.20/0.664 | 22.05/0.585 Goatee 26.40 26.36 26.35 26.32
LapSRN [6] 24.49/0.653 | 24.75/0.602
UR-DGN [16] 22.23/0.635 | 21.52/0.539 Table 6. Quantitative comparison on global and local region with
Baseline - L°F 24.94/70.730 | 24.20/0.639 different proportion of known attribute in training and testing. In
A - [SR 254670751 | 24.65/0.668 the first row, left number denotes the proportion of known attribute
B- SR 27.17/0.814 | 26.42/0.724 in training data, and right number denotes the proportion of known
AACNN - LSR 27.5570.826 | 26.61/0.734 attribute in testing data. Our AACNN still improves the perfor-
AACNN - LSE 4 [adv | 253570735 | 24.42/0.620 mance of hallucination adaptively with model trained and tested

by partial attribute inputs.
Table 5. Quantitative comparison on local region - “face” part

with the state-of-the-art methods on the class specific test dataset.
Heavy makeup distribute with a large area on face region. AACNN
- L5 still has superior performance in this region.

(c) Face part

(a) Eyepart  (b) Mouth & nose part

Figure 5. 3 types of local regions cropped from original size (96
x 112 pixels). (a) Cropped size: 90 x 30 pixels. (b) Cropped
size: 50 x 50 pixels. (c) Cropped size: 74 x 75 pixels. Since
global region evaluation is hard to reflect improvement of facial
detail enhacement, we crop smaller regions from original images
to enlarge the evaluation effect of attribute recovery.

glasses are the hardest one to recover. It can be divided
into two types - sunglasses and common eyeglasses. Sun-
glasses remain information on LR images, but common eye-
glasses only remain a little. In the case of common eye-

glasses, target attribute on results of most methods may be
disappeared or distorted. Some examples are shown in Fig.
[6l In Table [d] we discuss four attributes in mouth & nose
part. Beard (i.e. Goatee and Mustache) is the most dif-
ficult one to recover, because it gets inferior performance
among four attributes. In Table 5] we discuss two attributes
on face part. We crop a face size square to evaluate face re-
gion, because some attributes distribute with a large area on
face like heavy makeup. Our AACNN - L% achieves su-
perior quantitative results on three local regions than other
state-of-the-art methods. Different from global evaluation,
Branch B gets higher performance than using only Branch
A due to enhancing local region with attribute information.

For visual results showing in Fig. [} we can see
some samples compared with previous methods where our
AACNN has superior visual quality especially on eye-
glasses. Both (g) and (h) can hallucinate specific attribute
accurately in visual results. (h) is more realistic than (g)
with adversarial training.

4.4. Evaluation on unknown attribute situation

In this section, we do an auxiliary experiment for un-
known attribute situation. We randomly change some



(a) LR (b) Bicubic (c) LapSRN

(d)Maetal. (e) UR-DGN (f) Baseline
_ ISR

(2) AACNN  (h) AACNN
- LSR - LSR+Ladv

Figure 6. Comparison with the state-of-the-art methods on hallucination local test dataset. The first row is eyeglasses on “eye” part, the
middle row is goatee on “mouth & nose” part, and the rest is heavy makeup on "face” part. (a) Low-resolution inputs images. (b) Bicubic
interpolation. (c) LapSRN [6]. (d) Ma et al. [10]. (¢) UR-DGN [[6]. (f) Baseline - L°F. (g) AACNN - L%, (h) AACNN-LSE 4 v,
(i) High-resolution images. Both (g) and (h) can hallucinate specific attribute accurately in visual results. (h) is more realistic than (g) with

adversarial training.

(a) LR

(c) Baseline

(d) AACNN (¢) AACNN (one-hot)

Figure 7. (a) Low-resolution inputs images. (b) High-resolution images. (c) Baseline - L°F. (d) AACNN - L% with all attributes are
known. (¢) AACNN - L5F with one-hot attribute input (only eyeglasses is known). From visual results, our method can significantly
recover the target attribute with specific one-hot attribute vector (eyeglasses), and the recovery effect is close to AACNN with all attribute

known input.

known attributes into the unknown one and train a model
by attribute vectors with each only 50% information known.
Finally, we test the model with different known proportion
of attribute vectors. In Table [6] we do this experiment on
global and local evaluation (i.e. eyeglasses and goatee).

In the all-attribute-known situation, If testing on the
model which train with 50% known attributes, we can still
have great performance on global and local evaluation as
shown in the first two column of Table [6]

In the partial-attribute-known situation, we can still have
great performance (as shown in the last two column of Ta-
ble[6) by using the model which train with 50% known at-
tributes.

In Fig. [7} we further use class specific one-hot attribute
vector (eyeglasses) to test on the model which train with
50% known attributes. From the visual results, our method
can significantly recover the target attribute, and the effect
is close to AACNN with all attribute known input. As a re-
sult, AACNN still improves the performance of hallucina-
tion adaptively, even if we only know partial attribute input.

5. Conclusions

In face hallucination, most of previous methods can-
not accurately hallucinate local attributes or accessories in
ultra-low-resolution. We propose a novel Attribute Aug-
mented Convolutional Neural Network (AACNN) to as-
sist face hallucination by exploiting facial attributes. More
specifically, our method fuses the advantages of both im-
age domain and attribute domain and achieves superior vi-
sual quality than other state-of-the-art methods. In addition,
our AACNN still improves the performance of hallucination
adaptively with partial attribute input.
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